Research in Collaborative Robotics The MARVIN project

UCD School of Mechanical and Materials Engineering Laboratory for Advanced Manufacturing Simulation and Robotics

Nikolaos PAPAKOSTAS
Associate Professor, Dipl. Eng., PhD

Contents

- Research Project MARVIN
- Implementation
- Conclusions

Contents

MARVIN Project Partners

Co-funded by

Research Problem

- Microbiologists spend a significant amount of time on environmental monitoring activities in bioprocessing environments.
- Some of these activities involves:
 - Time-consuming gowning processes,
 - Handling of Petri Dishes in clean room settings.
- Using mobile robotics platforms could free operators to perform other high value-added tasks.

Key Objectives

- ✓ To facilitate the safe operation of Mobile Robotic Platforms in bioprocessing environments, complying with ISO 10218 Parts 1 and 2.
- ✓ To enable the autonomous movement of Mobile Robotic Platforms through GMP air locks, laboratories and production spaces, for environmental monitoring tasks.
- ✓ To integrate sensors for reducing the localisation error of the mobile platform.
- ✓ To build auxiliary devices using parametric design principles, enabling the use of diverse environmental monitoring equipment.
- ✓ To integrate Laboratory Information Management Systems with Mobile Robotic Platforms, so that environmental monitoring tasks are converted to robot tasks.
- ✓ To log all pertinent information with zero compliance errors.

Platform Architecture

Environments: Personalised Drug Manufacturing and Environmental Monitoring, Appl. Sci. 2022

NIBRT

National Institute for Bioprocessing Research and Training Dublin, Ireland

Video Link

Mathew, R.; McGee, R.; Roche, K.; Warreth, S.; Papakostas, N. Introducing Mobile Collaborative Robots into Bioprocessing Environments: Personalised Drug Manufacturing and Environmental Monitoring. Appl. Sci. 2022

Conclusions

- ✓ Demonstration of a fully autonomous and safe mobile robotic platform in real bioprocessing environments.
- ✓ The mobile platform could perform a series of additional tasks, such as:
 - Air sampling
 - Monitoring (temperature, humidity) in more locations
 - Quality inspection of processes using vision systems
 - Assembly and packaging
- ✓ Return on Investment Ireland: 2 to 3 years.
- ✓ Further Research:
 - More end effectors could be tested for performing additional tasks.
 - More mobile robot hardware will become available in the next few years.

Thank you for your attention!

UCD School of Mechanical and Materials Engineering
Laboratory for Advanced Manufacturing Simulation and Robotics
www.ucd.ie/lams

Nikolaos PAPAKOSTAS Associate Professor